Cytoskeletal Mechanisms of Axonal Contractility
نویسندگان
چکیده
منابع مشابه
Requirements for contractility in disordered cytoskeletal bundles.
Actomyosin contractility is essential for biological force generation, and is well understood in highly organized structures such as striated muscle. Additionally, actomyosin bundles devoid of this organization are known to contract both in vivo and in vitro, which cannot be described by standard muscle models. To narrow down the search for possible contraction mechanisms in these systems, we i...
متن کاملCytoskeletal coherence requires myosin-IIA contractility.
Maintaining a physical connection across cytoplasm is crucial for many biological processes such as matrix force generation, cell motility, cell shape and tissue development. However, in the absence of stress fibers, the coherent structure that transmits force across the cytoplasm is not understood. We find that nonmuscle myosin-II (NMII) contraction of cytoplasmic actin filaments establishes a...
متن کاملA quantitative analysis of contractility in active cytoskeletal protein networks.
Cells actively produce contractile forces for a variety of processes including cytokinesis and motility. Contractility is known to rely on myosin II motors which convert chemical energy from ATP hydrolysis into forces on actin filaments. However, the basic physical principles of cell contractility remain poorly understood. We reconstitute contractility in a simplified model system of purified F...
متن کاملA constitutive model for cytoskeletal contractility of smooth muscle cells
The constitutive model presented in this article aims to describe the main bio-chemo-mechanical features involved in the contractile response of smooth muscle cells, in which the biochemical response is modelled by extending the four-state Hai–Murphy model to isotonic contraction of the cells and the mechanical response is mainly modelled based on the phosphorylation-dependent hyperbolic relati...
متن کاملContribution of cytoskeletal elements to the axonal mechanical properties
BACKGROUND Microtubules, microfilaments, and neurofilaments are cytoskeletal elements that affect cell morphology, cellular processes, and mechanical structures in neural cells. The objective of the current study was to investigate the contribution of each type of cytoskeletal element to the mechanical properties of axons of dorsal root and sympathetic ganglia cells in chick embryos. RESULTS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2018
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2018.07.007